16 research outputs found

    Diseño de un nuevo proceso de modelizado digital de tablas de surf

    Get PDF

    Ecodiseño de un producto y desarrollo sostenible

    Get PDF

    Accuracy Evaluation of Dense Matching Techniques for Casting Part Dimensional Verification

    Get PDF
    Product optimization for casting and post-casting manufacturing processes is becoming compulsory to compete in the current global manufacturing scenario. Casting design, simulation and verification tools are becoming crucial for eliminating oversized dimensions without affecting the casting component functionality. Thus, material and production costs decrease to maintain the foundry process profitable on the large-scale component supplier market. New measurement methods, such as dense matching techniques, rely on surface texture of casting parts to enable the 3D dense reconstruction of surface points without the need of an active light source as usually applied with 3D scanning optical sensors. This paper presents the accuracy evaluation of dense matching based approaches for casting part verification. It compares the accuracy obtained by dense matching technique with already certified and validated optical measuring methods. This uncertainty evaluation exercise considers both artificial targets and key natural points to quantify the possibilities and scope of each approximation. Obtained results, for both lab and workshop conditions, show that this image data processing procedure is fit for purpose to fulfill the required measurement tolerances for casting part manufacturing processes.This research was partially funded by ESTRATEUS project (Reference IE14-396). given are accurate and use the standard spelling of funding agency names at https://search.crossref.org/funding, any errors may affect your future funding

    Measurement of Corporate Social Responsibility: A Review of Corporate Sustainability Indexes, Rankings and Ratings

    Get PDF
    Companies are currently changing their traditional role in society and transforming it into a proactive role in which their operations generate social and environmental positive impacts. Corporate Social Responsibility (CSR) has evolved from simple philanthropy to a more theoretical concept with a new corporate philosophy that takes all the interests of all stakeholders into consideration. The financial market is pushing the development of Socially Responsible Investment (SRI), which has led to the rise of Corporate Sustainability Systems (CSS). These CSSs are tools that rate corporate performance on sustainability. However, they constitute a chaotic universe, with instruments of different nature. This paper identifies and groups the common characteristics of the CSSs into three different typologies: Indexes, Rankings and Ratings. Despite this classification, and although the fundamental pillar of CSR is the “Stakeholder Theory”, CSSs are still not ideal tools to be used by all stakeholders. From the magma of CSSs, this article identifies and describes, through a comparative analysis, those which best comply with the “Stakeholder Theory”. This paper facilitates the work of researchers and stakeholders by exposing the differential characteristics of the most important CSSs.This research was founded by IHOBE, Environmental Management Public Agency of the Basque Government, and was carried out in collaboration with the Department of Graphic Design and Engineering Projects of the University of the Basque Country (UPV/EHU)

    3D printing to enable the reuse of marine plastic waste with reduced environmental impacts

    Get PDF
    Over the years, our oceans have witnessed an enormous accumulation of marine plastic waste resulting from ocean-related economic activities. As plastic pollution adversely affects marine wildlife and habitat, our society requires urgent solutions to address this increasingly alarming dilemma. Here, we turn our attention to circular economy principles to reduce the amount of nonbiodegradable petroleum-based marine litter. We consider a production process based on 3D printing to fabricate products for the marine industry, which uses marine plastic waste as a source material. Additionally, the suitability of virgin bio-based polyamide (bio-PA), polylactic acid (PLA), and polyhydroxybutyrate (PHB) is explored. PHB is selected due to its extraordinary rapid biodegradation in aquatic environments. To quantify the environmental impacts of the proposed processes, a cradle-to-grave life cycle assessment (LCA) is applied according to ISO 14040:2006 and ISO 14044:2006 standards. Different end-of-life alternatives are proposed, including landfill deposition, thermal degradation, and composting. LCA results reveal that the use of marine plastic waste is environmentally preferred in comparison with bio-PA, PLA, and PHB. Specifically, the global warming indicator, considered a prime driver toward sustainability, shows a 3.7-fold decrease in comparison with bio-PA. Importantly, the environmental impacts of PHB production through crude glycerol fermentation are quantified for the first time. Regarding the end-of-life options with a composting scenario, PLA and PHB are preferred as they yield biogenic carbon dioxide (CO2), which can be used as a renewable energy source.CircularSeas European Interreg Project: aimed at the promotion of the Green Economy in the Atlantic area, and co-financed by the European Regional Development Fund through the Interreg Atlantic Area Programme

    Ecodesign coupled with Life Cycle Assessment to reduce the environmental impacts of an industrial enzymatic cleaner

    Get PDF
    [EN] The application of life cycle assessment (LCA) through ecodesign strategies enables making informed choices on the sustainability of products and services. Accordingly, in this work we quantify the environmental impacts associated with the life cycle of an enzymatic multipurpose cleaner to provide guidance on how producers and consumers can boost the implementation of more sustainable production and consumption patterns. LCA methodology with primary data is applied. To enable future comparison, 1 kg of detergent in its container is used as a functional unit, and cradle-to-grave system boundaries are set according to the reference "detergents and cleaning products" Product Category Rules (PCR). The environmental impacts are grouped into upstream, core and downstream life cycle phases, and seven impact categories are analyzed. Regarding the upstream stage, the degreaser 3-butoxy-2-propanol has the larger environmental load in 4 of 7 categories analyzed. During the core stage, electricity, natural gas and road transport of raw materials are the main contributors, while road transport has the largest share in 6 of the 7 downstream impact categories. Considering a cradle-to-grave boundary, a CO2-eq footprint of 0.76 kg per kg of packaged detergent is obtained, where energy consumption and transportation are the main impact drivers. Five ecodesigned scenarios are proposed to lower the overall environmental footprint of the enzymatic cleaner, including the use of renewable energy, higher volume packaging, the use of recycled packaging, the use of renewable surfactants from vegetal origin instead of petrochemically derived ones and the change from road transport for distribution to railway transport are analyzed. Among the proposed new scenarios aimed lower the cradle-to-grave environmental impacts, enlarging packaging volume results the most effective choice, lowering the impacts by 8-38% (global warming reduction by 25%). On the contrary, the substitution of the petroleum-based surfactant by one based on palm kernel oil increases the impacts by 4-16%. Overall, using larger packaging and the adoption of railway transportation are the most effective measures to reduce the impacts. As the followed PCR does not take into account the impacts generated after the use phase, we encourage its extension to the complete life cycle so toxicity and biodegradability aspects can also be considered. Covering from the extraction of raw materials, to production, transport, use and end-of-life, this work may pave the path toward the adoption of responsible production and consumption patterns in the cleaning sector. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.The authors are grateful for the support provided by Ihobe (Public Society of Environmental Management of the Basque Government) and the assistance provided through the Basque Government (IT-1365-19) and the University of the Basque Country (GIC18/22) grants. Authors are also thankful to A&B Laboratorios de Biotecnologia S.A.U. for collaborating with us and providing all the necessary primary data for this work

    Aerosol Delivery by Inhalation Catheter and Trachea Digitalization

    Get PDF
    Neonatal respiratory distress syndrome (RDS) is related with high mortality and morbidity in preterm infants and the best approach to treat it is an open research field. The use of perfluorocarbons (PFC) together with non-invasive respiratory support techniques, such as nasal continuous positive airway pressure (CPAP), has confirmed its effectiveness to achieve a more homogeneous surfactant distribution. The goal of the current study was to evaluate the main features of the aerosol generated by an intracorporeal inhalation catheter, which consists of one central lumen delivering the liquid and six peripheral lumens delivering compressed air. Firstly, experiments were made through an Aerodynamic Particle Sizer (APS) with sterile water and perfluorocarbon FC75 with a driving pressure of 4 bar to analyze properties linked with lung deposition such as the aerodynamic diameter (Da), mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD). Subsequently, a numerical model was developed with CFD techniques. The experimental validation of the numerical model provides an accurate prediction of the air flow axial velocity.This work has been supported by Consolidated Groups from the Basque Government. Technical and human support provided by IZO-SGI, SGIker is gratefully acknowledged

    Aerosol Delivery by Inhalation Catheter and Trachea Digitalization

    Get PDF
    Neonatal respiratory distress syndrome (RDS) is related with high mortality and morbidity in preterm infants and the best approach to treat it is an open research field. The use of perfluorocarbons (PFC) together with non-invasive respiratory support techniques, such as nasal continuous positive airway pressure (CPAP), has confirmed its effectiveness to achieve a more homogeneous surfactant distribution. The goal of the current study was to evaluate the main features of the aerosol generated by an intracorporeal inhalation catheter, which consists of one central lumen delivering the liquid and six peripheral lumens delivering compressed air. Firstly, experiments were made through an Aerodynamic Particle Sizer (APS) with sterile water and perfluorocarbon FC75 with a driving pressure of 4 bar to analyze properties linked with lung deposition such as the aerodynamic diameter (Da), mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD). Subsequently, a numerical model was developed with CFD techniques. The experimental validation of the numerical model provides an accurate prediction of the air flow axial velocity.This work has been supported by Consolidated Groups from the Basque Government. Technical and human support provided by IZO-SGI, SGIker is gratefully acknowledged
    corecore